iC-DP

HIGHSIDE SWITCH

Rev C3, Page 1/8

FEATURES

36 V highside switch/level shifter

p-channel output driver without charge pump for short activation time

Decoupling of input and output reference voltages (SOT23-6L) permits control by 5V logic

200 mA of output current

Short-circuit protected

Output with an active freewheeling circuit

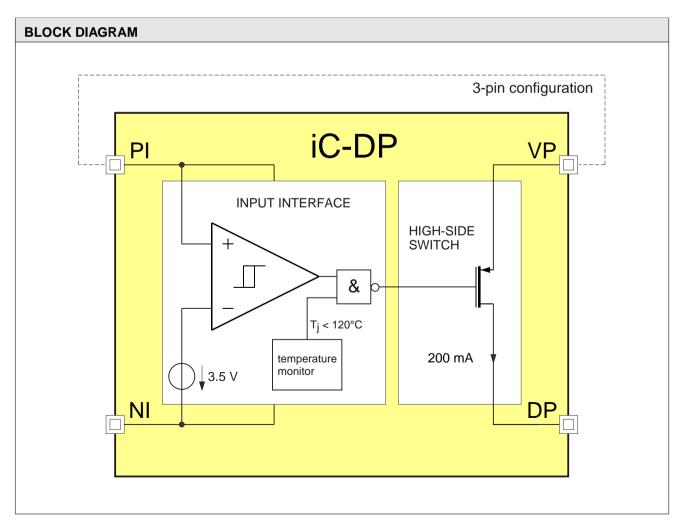
On-chip overtemperature protection with hysteresis

4 to 36 V input voltage range

Input with hysteresis

3-pin configuration possible

Wide temperature range of -40 to 120 °C


APPLICATIONS

Highside switch for industrial applications, such as relays, inductive proximity sensors and light barriers

PACKAGES

SOT23-6L

Copyright © 2011 iC-Haus http://www.ichaus.com

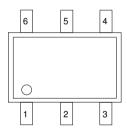
iC-DP

HIGHSIDE SWITCH

Rev C3, Page 2/8

DESCRIPTION

iC-DP is a monolithic highside switch for ohmic, inductive and capacitive loads.


Designed for a wide input voltage range of 4 to 36 V, it is capable of supplying a minimum output current of 200 mA. The output acts as a current source with a low saturation voltage; protection against shortcircuiting is provided by the device shutting down with

excessive temperature. The chip is activated when the input voltage threshold V(PI)-V(NI) of typically 3.5 V is exceeded.

When used as a 4-pin element, the input (PI, NI) and output (DP, VP) reference voltages are decoupled. The maximum permissive voltage difference between VP and PI is 36 V.

PACKAGES SOT23-6L (JEDEC)

PIN CONFIGURATION SOT23-6L (JEDEC), 1.6 mm

PIN FUNCTIONS

No. Name Function

1 NI **Negative Input** 2 PI Positive Input 3 DP Output 4 VP Supply 5 n.c.

6 n.c.

Rev C3, Page 3/8

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed. Absolute Maximum Ratings are no Operating Conditions. Integrated circuits with system interfaces, e.g. via cable accessible pins (I/O pins, line drivers) are per principle endangered by injected interferences, which may compromise the function or durability. The robustness of the devices has to be verified by the user during system development with regards to applying standards and ensured where necessary by additional protective circuitry. By the manufacturer suggested protective circuitry is for information only and given without responsibility and has to be verified within the actual system with respect to actual interferences.

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	V()	VP, PI Input Voltage with reference to NI	V()=V(VP)-V(NI) bzw. V()=V(PI)-V(NI)	-0.3	40	V
G002	V(DP)	DP Output Voltage with reference to VP	no free wheeling	-40	0.3	V
G003	I(DP)	DP Output Current		-300		mA
G004	I(PI)	PI Input Current			10	mA
G005	I(NI)	NI Input Current		-10		mA
G006	Vd()	ESD Susceptibility, all pins with reference to VP, DP	HBM, 100 pF discharged through 1.5 kΩ		2	kV
G007	Tj	Max. Junction Temperature		-40	150	°C
G008	Ts	Storage Temperature Range		-40	150	°C
G009	Eas	Inductive load switch-off energy dissipation	temperature monitor not active, Tj < Ton		5	mJ

THERMAL DATA

Operating Conditions: V(PI) = 4...36 V, unless otherwise stated

Item	Symbol	Parameter	Conditions			Unit	
No.				Min.	Тур.	Max.	
T01	Та	Ambient Temperature Range		-40		120	°C

Rev C3, Page 4/8

ELECTRICAL CHARACTERISTICS

Operating Conditions: V(PI) = 0...36 V. Ti = -40...120 °C. unless otherwise stated

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total I	Device			II .			
001	V()	VP, PI Supply Voltage	V()=V(VP)-V(NI) bzw. $V()=V(PI)-V(NI)$	4		36	V
002	I(PI)	PI Supply Current	No load; V(PI) - V(NI) > V(PI)on V(PI) - V(NI) < V(PI)off	0 0		1000 250	μA μA
003	I(VP)	VP Supply Current	No load; V(PI) - V(NI) > V(PI)on V(PI) - V(NI) < V(PI)off	80 0		680 2000	μA μA
004	I(NI)	NI Input Current	No load; V(PI) - V(NI) > V(PI)on V(PI) - V(NI) < V(PI)off	-1000 -2000		-130 0	μA μA
005	IIk(DP)	DP Output Leakage Current	V(PI) - V(NI) < V(PI)off, V(DP) = 0V(VP)	-100		100	μA
006	Vc(DP)lo	DP Clamp Voltage low	Vc(DP)Io = V(DP) - V(VP), I(DP) = -10 mA	-70	-45	-40	V
007	Vc(DP)hi	DP Clamp Voltage high	Vc(DP)hi = V(DP) - V(VP), I(DP) = 10 mA	0.3		1	V
800	Vc()hi	PI, VP Clamp Voltage high	Vc()hi = V() - V(NI), I() = 4 mA	37	40		V
009	tpiohi	Activation Delay NI → DP	V(PI)on < $V(PI)$ - $V(NI)$ < 48 V, V(Rload) = 48 V, $Rload$ = 360 Ω, $I(DP)$ = 0 \rightarrow -90 mA, I(DP) slew rate $I(DP)$ > 10 V/ $I(DP)$	1		25	μs
010	tpiolo	Deactivation Delay NI → DP	V(PI) - V(NI) < V(PI)off, V(Rload) = 36 V, $Rload = 360 Ω$, $I(DP) = -100 \rightarrow -10 mA$, Input slew rate > 10 V/μs	1		15	μs
Highs	ide Output	DP		II.			
101	Vs(DP)	Output Saturation Voltage	DP = hi, with reference to VP I(DP) = -200 mA, I(DP) = -50 mA	-800 -200			mV mV
102	Isc(DP)	Output Short-Circuit Current	V(VP) - V(DP) = 1 VVB, DP = hi Tj = -40 °C Tj = 27 °C Tj = 120 °C	-800	-400	-200 -200 -200	mA mA mA
103	SR(DP)on	Slew Rate, $V(DP) \rightarrow VP$	V(PI) - V(NI) > V(PI)on, V(Rload) = 36 V, $Rload = 360 Ω$, $V(VP) - V(DP) = 32.4 \rightarrow 3.6 V$		50		V/µs
104	SR(DP)off	Slew Rate, V(DP) → V(NI)	V(PI) - $V(NI)$ < $V(PI)$ off, $V(Rload)$ = 36 V, $Rload$ = 360 Ω , $V(VP)$ - $V(DP)$ = 3.6 \rightarrow 32.4 V		20		V/µs
105	Vfw(DP)	Freewheeling Voltage	I(DP) = -200 mA, with reference to VP, including Zener noise voltage	-60	-45	-40	V
Tempe	erature Mon	itor		'			
201	Toff	Thermal Shutdown Threshold		120		150	°C
202	Ton	Thermal Release Threshold	Decreasing temperature	110		135	°C
203	Thys	Thermal Shutdown Hysteresis	Thys = Toff - Ton		15		°C
Input	Threshold						
301	V(PI)on	Power-On Threshold Voltage	V(PI) - V(NI)	2.7		4.1	V
302	V(PI)off	Power-Off Threshold Voltage	V(PI)-V(NI), decreasing voltage	2.3		3.7	V
303	V(PI)hys	Hysteresis	V(PI)hys = $V(PI)$ on - $V(PI)$ off	170	380	590	mV

Rev C3, Page 5/8

ELECTRICAL CHARACTERISTIC: DIAGRAMS

Simulation Data

(current consumption without load; leakage currents not included)

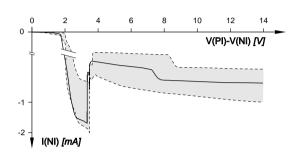


Figure 1: NI input current, no load

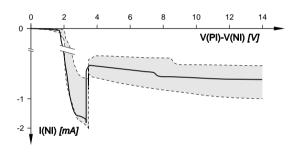


Figure 3: NI input current, I(DP) = -100 mA

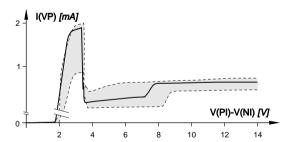


Figure 5: VP supply current, no load

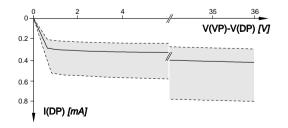


Figure 7: DP output characteristic

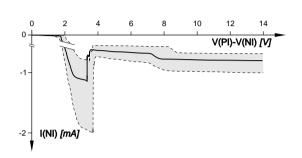


Figure 2: NI input current, I(DP) = -5 mA

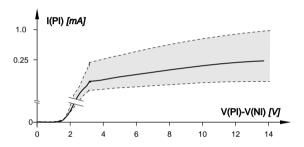


Figure 4: PI input current, load independent

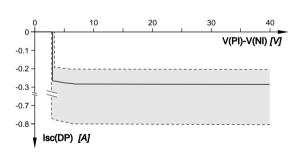


Figure 6: DP short-circuit output current

Rev C3, Page 6/8

APPLICATION NOTES

Example application circuits for SOT23-6L package

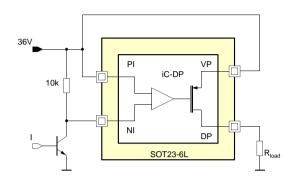


Figure 8: 36 V supply, NPN input control

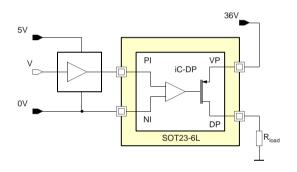


Figure 10: 5 V µC operating at 5 to 0 V input control, 36 V output supply

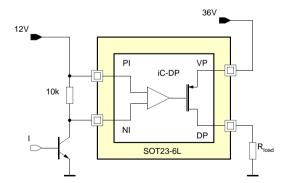


Figure 12: 12 V NPN input control, 36 V output supply

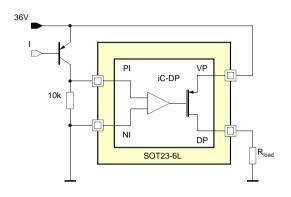


Figure 9: 36 V supply, PNP input control

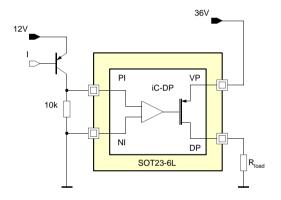


Figure 11: 12 V PNP input control, 36 V output supply

Rev C3, Page 7/8

iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by email.

Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these materials

The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in Hanover (Hannover-Messe).

We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can be put to.

Rev C3, Page 8/8

ORDERING INFORMATION

Type	Package	Order Designation
iC-DP	SOT23-6L (JEDEC)	iC-DP SOT23-6L

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Tel.: +49 (61 35) 92 92-0
Am Kuemmerling 18 Fax: +49 (61 35) 92 92-192
D-55294 Bodenheim Web: http://www.ichaus.com
GERMANY E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners